Last Universal Common Ancestor


Jump to: navigation, search


File:Phylogenetic tree.svg
A cladogram linking all major groups of living organisms to the LUA (the black trunk at the bottom). This graph is derived from ribosomal RNA sequence data.
File:Tree of life SVG.svg
A cladogram linking all major groups of living organisms to the LUA (short trunk at the center). This graph is derived from complete genome sequencing data.

The last universal ancestor (LUA, also called the last universal common ancestor, LUCA, the cenancestor or "number one" in slang) is the most recent organism from which all organisms now living on Earth descend. Thus it is the most recent common ancestor (MRCA) of all current life on Earth. The LUA is estimated to have lived some 3.5 to 3.8 billion years ago (sometime in the Paleoarchean era).<ref>Doolittle, W. Ford (February, 2000). Uprooting the tree of life. Scientific American 282 (6): 90–95.</ref><ref>Nicolas Glansdorff, Ying Xu & Bernard Labedan: The Last Universal Common Ancestor : emergence, constitution and genetic legacy of an elusive forerunner. Biology Direct 2008, 3:29.</ref>



Based on the properties shared by all independently living organisms on Earth,<ref>G. Wächtershäuser,Towards a reconstruction of ancestral genomes by gene cluster alignment. System. Appl. Microbiol. 21, 473-477 (1998)</ref><ref> What is Life?, by Michael Gregory, Clinton College</ref><ref>The universal nature of biochemistry, by Norman R. Pace, PNAS | January 30, 2001 | vol. 98 | no. 3 | 805-808</ref><ref>G. Wächtershäuser From pre-cells to Eukarya — a tale of two lipids. Mol. Microbiol. January, 47(1) 13-22 (2003) PMID: 12492850</ref>

  • The genetic code is based on DNA.
  • The genetic code is expressed via RNA intermediates, which are single-stranded.
    • RNA is produced by a DNA-dependent RNA polymerase using nucleotides similar to those of DNA with the exception of Thymidine in DNA, replaced by Uridine in RNA.
  • The genetic code is expressed into proteins. All other properties of the organism (e.g. synthesis of lipids or carbohydrates) are the result of protein enzymes.
  • Proteins are assembled from free amino acids by translation of an mRNA by ribosomes, tRNA and a group of related proteins.
    • Ribosomes are composed of two subunits, one big and one small.
    • Each ribosomal subunit is composed of a core of ribosomal RNA surrounded by ribosomal proteins.
    • The RNA molecules (rRNA and tRNA) play an important role in the catalytic activity of the ribosomes
  • Only 20 amino acids are used, to the exclusion of countless non-standard amino acids; only the L-isomers are used.
    • Amino acids must be synthesized from glucose by a group of specialized enzymes; the synthesis pathways are arbitrary and conserved.
  • Glucose can be used as a source of energy and carbon; only the D-isomer is used.
    • Glycolysis goes through an arbitrary degradation pathway.
  • ATP is used as an energy intermediate.
  • The cell is surrounded by a cellular membrane composed of a lipid bilayer.
  • Inside the cell, the concentration of sodium is lower, and potassium is higher, than outside. This choice is arbitrary. This gradient is maintained by specific ion pumps.
  • The cell multiplies by duplicating all its contents followed by cellular division.


When LUA was hypothesized, cladograms based on genetic distance between living cells indicated that Archaea split early from the rest of life. This was inferred from the fact that all known archaeans were highly resistant to environmental extremes such as high salinity, temperature or acidity, and led some scientists to suggest that LUA evolved in areas like the deep ocean vents, where such extremes prevail today. But archaeans were discovered in less hostile environments and are now believed by many taxonomists to be more closely related to eukaryotes than bacteria, though this is still somewhat contentious.

It is possible that all of LUA's contemporaries became extinct and only LUA's genetic heritage lived to this day. Or, as proposed by Carl Woese, perhaps no individual organism can be considered a LUA, but the genetic heritage of all modern organisms derived through horizontal gene transfer among an ancient community of organisms.<ref>Woese, Carl, The universal ancestor, Proceedings of the National Academy of Sciences, Vol. 95, Issue 12, 6854-6859, June 9, 1998,</ref>

See also


Personal tools