Cephalopoda

From Palaeos.org

Jump to: navigation, search
(subject order and technical corrections)
Line 1: Line 1:
'''Cephalopods''' (Class Cephalopoda)are exclusively marine mollusks (Phyllum [[Mollusca]]) with well developed prehensile grasping appediges the encircle the mouth and protrude from a well defined head, and which have a well developed nervous system. All are carnivorous. Other mollusks include [[Gastropoda|gastropods]], snails, [[bivalvia|pelecypods]], clams and other bivalves, and [[Scaphopoda|scaphopods]], tusk shells.     
'''Cephalopods''' (Class Cephalopoda)are exclusively marine mollusks (Phyllum [[Mollusca]]) with well developed prehensile grasping appediges the encircle the mouth and protrude from a well defined head, and which have a well developed nervous system. All are carnivorous. Other mollusks include [[Gastropoda|gastropods]], snails, [[bivalvia|pelecypods]], clams and other bivalves, and [[Scaphopoda|scaphopods]], tusk shells.     
 +
 +
==Biology==
 +
 +
The name Cephalopoda literally means "head feet" which refers to the cluster of [[arm]]s and/or [[tentacle]]s that project forward from the head, surrounding the mouth.  The group includes living [[Coleoidea|coleoids]] (squid, octopods, and cuttlefish) and ''[[Nautilus]]'', and a large number of ancient (mostly [[Paleozoic]] and [[Mesozoic]]) forms.  All are active marine predators (although some early types were drifters), able to swim swiftly, and easily competing with fish in the marine habitat.  There are 650 living species, but more than 7,500 fossil forms are known (and as in all cases like this this number is obviously a gross underestimate of the real number of cephalopod species that have ever lived through the [[Phanerozoic]] time).  Like fish they are equipped with highly developed eyes and other sense organs, include both active swimmers and bottom-dwellers, and in many cases have a streamlined body for more efficient locomotion.  Swimming is by rapidly expelling water from the [[mantle cavity]].  The water is forced out through a funnel or [[siphon]] - the [[hyponome]] - actually a tube-like flap of modified foot, thus driving the animal in the opposite direction.  This is the key to the so-called "jet-propulsion" of these animals  The funnel is highly maneuverable and can be directed in any direction, allowing motion backwards or forwards.  However, the fastest movement is backward escape swimming, with powerful contractions of the mantle ejecting water through the forward facing funnel.  A cloud of "ink" can also be ejected as a sort of underwater smoke screen to hide the fleeing animal.
 +
 +
All cephalopods are carnivorous, feeding primarily on fish, other [[Mollusca|mollusks]], [[Crustacea]], and worms.  The head projects into a crown of prehensile tentacles - ranging from 8 in the octopus to 80 or 90 in the living nautilus.  These tentacles are actually a specialized form of the standard molluscan foot, and used for grasping prey.  Once the prey is snared it is bitten with strong beak-like jaws and pulled into the mouth by the [[radula]].
 +
 +
Cephalopods are quite large by molluscan standards (most species being between 6 and 70 cm including tentacles), with the giants of the group - such as the modern day ''[[Architeuthis]]'', the giant squid, with a body length (including tentacles) of up to 20 meters, the Ordovician [[Endocerida|endocerid]] [[Nautiloidea|nautiloid]] ''[[Cameroceras]]'', with a straight shell up to 10 metres in length, and the Cretaceous [[Ammonoidea|ammonoid]] ''[[Pachydiscus seppenradensis]]'', with a coiled shell 3 metres in diameter - the largest invertebrates ever to live, with weights of one to two tons.  Such giant cephalopods play or played a similar ecological role of top predator to that of [[Devonian]] [[Arthrodira|arthrodire]] [[Placodermi|placoderms]], [[Mesozoic]] [[pliosaur]]s and [[Cenozoic]] [[Odontoceti|toothed whales]].
 +
 +
Cephalopods have a highly developed nervous system, unequalled among the invertebrates, and correlated with locomotor dexterity and carnivorous lifestyle (predators generally always have larger brains than prey animals).  There is a high level of cephalization (development and concentration of sensory and neural centers in the head).  The nerve ganglia are concentrated and more or less fused to form a brain that encircles the esophagus. A bundle of giant nerve fibres tied to the [[mantle]] give them very rapid reflexes.  They are visual creatures, changing colour to express mood.  The eyes of the [[Coleoidea]] are very elaborate, with a retinal structure remarkably like that found in vertebrates.  The eye of the giant squid is the largest of any animal - 40 cm across. Nautiloids have smaller and more primitive eyes.
 +
 +
As with vertebrates, the brain is partitioned into different areas that control particular functions.  For example, the brain centres for both forward swimming and closing of the suckers are located in the cerebral ganglia.  These animals are most intelligent and highly evolved of the mollusks, indeed they are the most intelligent of all the invertebrates, exhibiting complex patterns of behavior.  Octopods can easily be trained to distinguish between classes of objects.  See [http://en.wikipedia.org/wiki/Cephalopod_intelligence Cephalopod intelligence]
==Class Cephalopoda==  
==Class Cephalopoda==  
Line 12: Line 24:
Most classification divide the Cephalopoda in the three subclasses as shown. Nautiloids are also known as Palcephalopoda, a term which is applied to most but not all members of the subclass.  Ammonoids and Coleoids and a few nautiloides come under the term Neocephalopoda. Both terms are based on the morphology and biology of living cephalopods, Palcephalopoda for the presumed primitive ''Nautilus'' and ''Allonautilus'', representing the nautilids and Neocephalopoda for the derived and presumed advanced coleoids.                   
Most classification divide the Cephalopoda in the three subclasses as shown. Nautiloids are also known as Palcephalopoda, a term which is applied to most but not all members of the subclass.  Ammonoids and Coleoids and a few nautiloides come under the term Neocephalopoda. Both terms are based on the morphology and biology of living cephalopods, Palcephalopoda for the presumed primitive ''Nautilus'' and ''Allonautilus'', representing the nautilids and Neocephalopoda for the derived and presumed advanced coleoids.                   
-
 
-
 
-
 
-
===Phylogeny===
 
-
 
-
[[Cyrtosoma|CYRTOSOMA]]
 
-
  |--+--[[Scaphopoda|SCAPHOPODA]]
 
-
  |  `-'''CEPHALOPODA'''
 
-
  |    `- '''[[Nautiloidea]]'''
 
-
  |      |--[[Plectronocerida]]
 
-
  |      `-+--[[Ellesmerocerida]]
 
-
  |        |--[[Endocerida]]
 
-
  |        |--[[Actinocerida]]
 
-
  |        |--[[Pseudorthocerida]]
 
-
  |        |--[[Discosorida]]
 
-
  |        `--+-[[Orthocerida]]
 
-
  |            `--'''Neocephalopoda'''
 
-
  |              |--'''[[Ammonoidea]]'''
 
-
  |              `--'''[[Coleoidea]]'''
 
-
  |                |--[[Decapodiformes]]
 
-
  |                `--[[Octopodiformes]]
 
-
  `--[[Gastropoda]]
 
-
 
===Systematics===
===Systematics===
Line 59: Line 48:
While there is general agreement regarding classification of recent cephalopods, mostly coleoids, based on soft part anatomical features, classification of extinct fossil forms based on such criteria is impossible other than for a few inferences that night be drawn from preserved muscle attachment scars, preserved radula, tentacle imprints, and isolated body impressions. Shell based features on the other hand provide the basis for a reliable, phylogenetically plausible  and generally accepted classification of extinct forms.   
While there is general agreement regarding classification of recent cephalopods, mostly coleoids, based on soft part anatomical features, classification of extinct fossil forms based on such criteria is impossible other than for a few inferences that night be drawn from preserved muscle attachment scars, preserved radula, tentacle imprints, and isolated body impressions. Shell based features on the other hand provide the basis for a reliable, phylogenetically plausible  and generally accepted classification of extinct forms.   
-
 
====Palcephalopoda-Neocephalopoda ====
====Palcephalopoda-Neocephalopoda ====
Line 65: Line 53:
The Palcephalopoda-Neocephalopoda distinction is based on essential differences between the living nautiloid genera, ''Nautilus'' and ''Allonautilus'', and the huge variety of living coleoids. Living nautiloides are tetrabranchiate (have 4 gills in 2 pairs), are lateradulate (13 elements per radular row), and produce multiple batches of well develovoped offspring from large yolk-rich eggs. The have an external shell, retained from their ancestors but have mutliple finger-like protractable tentacles, probably a derived character. Also their eyes have no lens but operate like a pin-hole camera, again apparently primitive,  Coleoids are dibranchiate (have 2 gills), are angusteradulate (9 elements per radular row) and in general produce a single batch of numerous planctonic offspring before dying. They lack an external shell, a obvious derived character but have 8 or 10 muscular suckered and/or hooked tentacles which seems to be a retained primitive trait. On the other hand coleoids have well developed eyes with lenses, sometimes covered by a corneal membrane.
The Palcephalopoda-Neocephalopoda distinction is based on essential differences between the living nautiloid genera, ''Nautilus'' and ''Allonautilus'', and the huge variety of living coleoids. Living nautiloides are tetrabranchiate (have 4 gills in 2 pairs), are lateradulate (13 elements per radular row), and produce multiple batches of well develovoped offspring from large yolk-rich eggs. The have an external shell, retained from their ancestors but have mutliple finger-like protractable tentacles, probably a derived character. Also their eyes have no lens but operate like a pin-hole camera, again apparently primitive,  Coleoids are dibranchiate (have 2 gills), are angusteradulate (9 elements per radular row) and in general produce a single batch of numerous planctonic offspring before dying. They lack an external shell, a obvious derived character but have 8 or 10 muscular suckered and/or hooked tentacles which seems to be a retained primitive trait. On the other hand coleoids have well developed eyes with lenses, sometimes covered by a corneal membrane.
-
The extent to which these distinctions can be extrapolated into fossil forms is questionable and subject to individual interpretation. Ammonoids for example are thought to be more closely related to coleoids than to nautiloids on the basis of being angueratulate (with 9 radular elements like coleoids) from the few radula found, in spite of having an external shell, and are therefor considered neocephalopods. Paleozoic orthocerids are considered neocephalopods because their protoconch is like that of ammonoids in spite of having an obviously nautiloid phragmocone.  
+
The extent to which these distinctions can be extrapolated into fossil forms is questionable and subject to individual interpretation. Ammonoids for example are thought to be more closely related to coleoids than to nautiloids on the basis of being angueratulate (with 9 radular elements like coleoids) from the few radula found, in spite of having an external shell, and are therefor considered neocephalopods. Paleozoic orthocerids are considered neocephalopods because their protoconch is like that of ammonoids in spite of having an obviously nautiloid phragmocone.
-
 
+
 
==== Alternative Taxonomies====
==== Alternative Taxonomies====
Line 116: Line 104:
   Order [[Vampyromorpha]] Grimpe 1917
   Order [[Vampyromorpha]] Grimpe 1917
   Order [[Octopodida]] Leach 1818
   Order [[Octopodida]] Leach 1818
-
 
-
 
-
==Biology==
 
-
 
-
The name Cephalopoda literally means "head feet" which refers to the cluster of [[arm]]s and/or [[tentacle]]s that project forward from the head, surrounding the mouth.  The group includes living [[Coleoidea|coleoids]] (squid, octopods, and cuttlefish) and ''[[Nautilus]]'', and a large number of ancient (mostly [[Paleozoic]] and [[Mesozoic]]) forms.  All are active marine predators (although some early types were drifters), able to swim swiftly, and easily competing with fish in the marine habitat.  There are 650 living species, but more than 7,500 fossil forms are known (and as in all cases like this this number is obviously a gross underestimate of the real number of cephalopod species that have ever lived through the [[Phanerozoic]] time).  Like fish they are equipped with highly developed eyes and other sense organs, include both active swimmers and bottom-dwellers, and in many cases have a streamlined body for more efficient locomotion.  Swimming is by rapidly expelling water from the [[mantle cavity]].  The water is forced out through a funnel or [[siphon]] - the [[hyponome]] - actually a tube-like flap of modified foot, thus driving the animal in the opposite direction.  This is the key to the so-called "jet-propulsion" of these animals  The funnel is highly maneuverable and can be directed in any direction, allowing motion backwards or forwards.  However, the fastest movement is backward escape swimming, with powerful contractions of the mantle ejecting water through the forward facing funnel.  A cloud of "ink" can also be ejected as a sort of underwater smoke screen to hide the fleeing animal.
 
-
 
-
All cephalopods are carnivorous, feeding primarily on fish, other [[Mollusca|mollusks]], [[Crustacea]], and worms.  The head projects into a crown of prehensile tentacles - ranging from 8 in the octopus to 80 or 90 in the living nautilus.  These tentacles are actually a specialized form of the standard molluscan foot, and used for grasping prey.  Once the prey is snared it is bitten with strong beak-like jaws and pulled into the mouth by the [[radula]].
 
-
 
-
Cephalopods are quite large by molluscan standards (most species being between 6 and 70 cm including tentacles), with the giants of the group - such as the modern day ''[[Architeuthis]]'', the giant squid, with a body length (including tentacles) of up to 20 meters, the Ordovician [[Endocerida|endocerid]] [[Nautiloidea|nautiloid]] ''[[Cameroceras]]'', with a straight shell up to 10 metres in length, and the Cretaceous [[Ammonoidea|ammonoid]] ''[[Pachydiscus seppenradensis]]'', with a coiled shell 3 metres in diameter - the largest invertebrates ever to live, with weights of one to two tons.  Such giant cephalopods play or played a similar ecological role of top predator to that of [[Devonian]] [[Arthrodira|arthrodire]] [[Placodermi|placoderms]], [[Mesozoic]] [[pliosaur]]s and [[Cenozoic]] [[Odontoceti|toothed whales]].
 
-
 
-
Cephalopods have a highly developed nervous system, unequalled among the invertebrates, and correlated with locomotor dexterity and carnivorous lifestyle (predators generally always have larger brains than prey animals).  There is a high level of cephalization (development and concentration of sensory and neural centers in the head).  The nerve ganglia are concentrated and more or less fused to form a brain that encircles the esophagus. A bundle of giant nerve fibres tied to the [[mantle]] give them very rapid reflexes.  They are visual creatures, changing colour to express mood.  The eyes of the [[Coleoidea]] are very elaborate, with a retinal structure remarkably like that found in vertebrates.  The eye of the giant squid is the largest of any animal - 40 cm across. Nautiloids have smaller and more primitive eyes.
 
-
 
-
As with vertebrates, the brain is partitioned into different areas that control particular functions.  For example, the brain centres for both forward swimming and closing of the suckers are located in the cerebral ganglia.  These animals are most intelligent and highly evolved of the mollusks, indeed they are the most intelligent of all the invertebrates, exhibiting complex patterns of behavior.  Octopods can easily be trained to distinguish between classes of objects.  See [http://en.wikipedia.org/wiki/Cephalopod_intelligence Cephalopod intelligence]
 
==Evolutionary History==
==Evolutionary History==
Line 142: Line 117:
The Coleoidea remain an important and remarkably successful group of marine invertebrates to this day.  Meanwhile, only a few species of pearly nautilus continue as the last survivors of the once important Nautiloidea.
The Coleoidea remain an important and remarkably successful group of marine invertebrates to this day.  Meanwhile, only a few species of pearly nautilus continue as the last survivors of the once important Nautiloidea.
 +
===Phylogeny/Taxonomy===
-
See also [[Cephalopoda incertae sedis]]
+
[[Mollusca|<==]]Cephalopoda [Ellesmerocerida, Nautiloidea, Octopodia, Tetrabranchiata]
 +
    |--''Protactinoceras'' [Protactinoceratida] H87
 +
    |    `--''P. magnitubulum'' H87
 +
    |--+--Plectronoceratida H87
 +
    |  |    |  ''i. s.'': ''Lunanoceras precordium'' H87
 +
    |  |    `--[[Plectronoceratidae]] STK64
 +
    |  |--[[Discosorida]] H87
 +
    |  `--''Archendoceras'' [Yanhecerida] H87
 +
    |      `--''A. conipartitum'' H87
 +
    `--Ellesmeroceratida H87
 +
        |  ''i. s.'': ''Acaroceras endogastrum'' H87
 +
        |        ''Huaihecerina elegans'' H87
 +
        |--''Shideleroceras'' Flower & Foerste ''in'' Flower 1946 [Shideleroceratidae] FG64
 +
        |    `--*''S. sinuatum'' Foerste ''in'' Flower 1946 FG64
 +
        |--+--[[Baltoceratidae]] STK64
 +
        |  `--Angusteradulata DM92
 +
        |      |--[[Michelinoceratida]] STK64
 +
        |      `--[[Bactritida]] STK64
 +
        |--+--[[Ellesmeroceratidae]] FG64
 +
        |  `--+--[[Endoceratoidea]] STK64
 +
        |    `--[[Actinocerida]] P98
 +
        |--+--[[Bassleroceratidae]] STK64
 +
        |  `--+--[[Tarphycerida]] STK64
 +
        |    |--[[Barrandeocerida]] STK64
 +
        |    `--+--[[Oncocerida]] STK64
 +
        |        `--[[Nautilida]] STK64
 +
        |--''Cyrtocerina'' Billings 1865 [Cyrtocerinidae] FG64
 +
        |    |--*''C. typica'' Billings 1865 FG64
 +
        |    |--''C. crenulata'' Flower 1952 P68
 +
        |    |--''C. foerstei'' Flower 1952 P68
 +
        |    |--''C. kimmswickense'' Flower 1952 P68
 +
        |    |--''C. madisonensis'' FG64
 +
        |    `--''C. schoolcrafti'' Clarke 1897 P68
 +
        |--Bathmoceratidae [Eothinoceratidae] STK64
 +
        |    |--''Eothinoceras'' Ulrich, Foerste ''et al.'' 1944 FG64
 +
        |    |    |--*''E. americanum'' Ulrich, Foerste ''et al.'' 1944 FG64
 +
        |    |    `--''E. maitlandi'' FG64
 +
        |    `--''Bathmoceras'' Barrande 1867 [=''Bothmoceras'' (''l. c.'')] FG64
 +
        |        |--*''B. complexum'' (Barrande 1856) [=''Orthoceras complexum''] FG64
 +
        |        |--''B. linnarssoni'' FG64
 +
        |        `--''B. tennesseense'' Ulrich, Foerste ''et al.'' 1944 P68
 +
        `--Protocycloceratidae [Apocrinoceratidae, Endocycloceratidae, Rudolfoceratidae] STK64
 +
              |--''[[Protocycloceras]]'' FG64
 +
              |--''Apocrinoceras'' Teichert & Glenister 1954 FG64
 +
              |    `--*''A. talboti'' Teichert & Glenister 1954 FG64
 +
              |--''Diastoloceras'' Teichert & Glenister 1954 FG64
 +
              |    `--*''D. perplexum'' Teichert & Glenister 1954 FG64
 +
              |--''Kyminoceras'' Teichert & Glenister 1954 FG64
 +
              |    `--*''K. forresti'' Teichert & Glenister 1954 FG64
 +
              |--''Notocycloceras'' Teichert & Glenister 1954 FG64
 +
              |    `--*''N. yurabiense'' Teichert & Glenister 1954 FG64
 +
              |--''Rudolfoceras'' Ulrich, Foerste ''et al.'' 1944 [incl. ''Orygoceras'' Ruedemann 1906 ''non'' Brusina 1882] FG64
 +
              |    `--*''R. cornuoryx'' (Whitfield 1886) [=''Orthoceras cornuoryx''] FG64
 +
              |--''Vassaroceras'' Ulrich, Foerste ''et al.'' 1944 FG64
 +
              |    `--*''V. henrietta'' (Dwight 1884) [=''Orthoceras henrietta''] FG64
 +
              |--''Ectocycloceras'' Ulrich & Foerste 1936 FG64
 +
              |    |--*''E. cataline'' (Billings 1865) [=''Orthoceras cataline''] FG64
 +
              |    `--''E. cato'' FG64
 +
              |--''Walcottoceras'' Ulrich & Foerste 1936 FG64
 +
              |    |--*''W. monsense'' (Walcott 1924) [=''Endoceras monsensis''] FG64
 +
              |    `--''W. obliquum'' Ulrich, Foerste ''et al.'' 1944 P68
 +
              |--''Endocycloceras'' Ulrich, Foerste ''et al.'' 1944 FG64
 +
              |    |--*''E. wilsonae'' Ulrich, Foerste ''et al.'' 1944 FG64
 +
              |    |--''E. legorense'' Ulrich, Foerste ''et al.'' 1944 P68
 +
              |    |--''E. perannulatum'' Ulrich, Foerste ''et al.'' 1944 P68
 +
              |    `--''E. subcurvatum'' Ulrich, Foerste ''et al.'' 1944 P68
 +
              `--''Catoraphiceras'' Ulrich & Foerste 1936 FG64
 +
                  |--*''C. lobatum'' Ulrich & Foerste 1936 FG64
 +
                  |--''C. colon'' FG64
 +
                  |--''C. cushingi'' Ulrich, Foerste ''et al.'' 1944 P68
 +
                  |--''C. foerstei'' P68
 +
                  |--''C. osagense'' Ulrich, Foerste ''et al.'' 1944 P68
 +
                  |--''C. resseri'' Ulrich, Foerste ''et al.'' 1944 P68
 +
                  `--''C. vaginatum'' FG64
 +
 
 +
Cephalopoda ''incertae sedis'':
 +
  ''Tapashanites'' PE02
 +
  ''Pseudotirolites asiatica'' PE02
 +
  ''Pseudogrammoceras'' PE02
 +
  ''Denckmannia'' DC01
 +
  ''Esericeras'' DC01
 +
  ''Pleydellia subcompta'' DC01
 +
  ''Belemnella'' CP02
 +
    |--''B. casimirovensis'' CP02
 +
    |--''B. lanceolata'' CP02
 +
    `--''B. occidentalis'' CP02
 +
  ''Belemnitella'' S98
 +
    |--''B. americana'' JD05
 +
    |--''B. junior'' CP02
 +
    |--''B. langei'' CP02
 +
    |--''B. minor'' CP02
 +
    `--''B. schmidti'' Christensen & Schulz 1997 S98
 +
  ''Dimitobelus'' CF03
 +
    |--''D. hectori'' CF03
 +
    `--''D. stimulus'' RC02
 +
  ''Phoenixites frechi'' GR97
 +
  ''Holzapfeloceras'' D02
 +
    |--*''H. convolutum'' (Holzapfel 1895) D02
 +
    `--''H. croyi'' House 1978 D02
 +
  ''Parodiceras'' D02
 +
  ''Werneroceras'' D02
 +
  ''Maenioceras terebratum'' (Sandberger & Sandberger 1856) D02
 +
  ''Gomiprotomeroceras'' (''nom. inv.'') D02
 +
    `--''G. acutum'' Sobolew 1914 D02
 +
  ''Wedekindella brilonensis'' (Kayser 1872) D02
 +
  ''Pseudoprobeloceras polonicum'' (Sobolew 1914) D02
 +
  ''Archoceras'' D02
 +
    |--''A. tataense'' Bensaïd 1974 D02
 +
    `--''A. varicosum'' (Drevermann 1901) D02
 +
  ''Ponticeras'' D02
 +
  ''Acanthoclymenia genundewa'' (Clarke 1898) D02
 +
  ''Epitornoceras mithracoides'' (Frech 1887) D02
 +
  ''Linguatornoceras'' [incl. ''Truyolsoceras''] D02
 +
    |--''L. clausum'' (Glenister 1958) D02
 +
    |--''L. compressum'' (Clarke 1899) D02
 +
    `--''‘Truyolsoceras’ undulatum'' (Sandberger & Sandberger 1856) D02
 +
  ''Beloceras acutodorsatum'' Dybczyński 1913 D02
 +
  ''Crickites holzapfeli'' Wedekind 1913 D02
 +
  ''Crassotornoceras belgicum'' (Matern 1931) D02
 +
  ''Siemiradzkia'' P87
 +
  ''Arkelloceras tozeri'' Frebold 1951 P87
 +
  ''Parachondroceras filicostatum'' Imlay 1967 P87
 +
  ''Imlayoceras'' Frebold 1963 P87
 +
  ''Talkeetnites'' Imlay 1980 P87
 +
  ''Longaeviceras'' P87
 +
  ''Chamoussetia'' P87
 +
  ''Xenocephalites'' [incl. ''Cadoceras'' (''Oligocadoceras'' Meledina 1977)] P87
 +
    |--''‘Arcticoceras’ crassicostatum'' P87
 +
    `--''‘Arcticoceras’ loveanum'' P87
 +
  ''Goniocamax lundgreni'' S98
 +
  ''Gonioteuthis praewesfalica'' S98
 +
  ''Actinocamax'' S98
 +
    |--''A. quadratus'' W26
 +
    `--''A. verus'' S98
 +
        |--''A. v. verus'' S98
 +
        `--''A. v. antefragilis'' S98
 +
  ''Teicherticeras'' TC71
 +
    |--''T. desideratum'' TC71
 +
    `--''T. lissovi'' TC71
 +
  ''Talenticeras'' TC71
 +
  ''Mimosphinctes'' TC71
 +
  ''Miklukhoceras pamiricum'' Pavlov 1967 ZL04
 +
  ''Prostacheoceras'' Ruzhencev 1937 [Cycloloboidea, Vidrioceratidae] ZL04
 +
    |--*''P. juresanensis'' (Maximova 1935) [=''Marathonites juresanensis''] ZL04
 +
    |--''P. alter'' Leonova 1989 ZL04
 +
    `--''P. oshense'' (Toumanskaya 1938) ZL04
 +
  ''Schreyerites binodosus'' (Hauer 1851) SC04
 +
  ''Paraceratites'' SC04
 +
    |--''P. brembanus'' (Mojsisovics 1882) SC04
 +
    `--''P. trinodosus'' (Mojsisovics 1882) SC04
 +
  ''Synpharciceras clavilobum'' (Sandberger & Sandberger 1850) KK02
 +
  ''Acrimeroceras falcisulcatum'' Becker 1993 KK02
 +
  ''Prolobites'' KK02
 +
    |--''P. aktubensis'' Bogoslovsky 1969 KK02
 +
    `--''P. delphinus'' (Sandberger & Sandbergber 1850) KK02
 +
  ''Clistoceras globosum'' Nassichuk 1967 KK02
 +
  ''Nathorstites maconnelli'' (Whiteaves 1889) KK02
 +
  ''Mayaites'' (''Araucanites'') ''stipanicici'' Westermann & Riccardi 1975 KK02
 +
  ''Hibolithes catlinensis'' E01
 +
  ''Amaltheus'' Montfort 1808 [Amaltheidae] BR05
 +
  ''Hedstroemoceras'' Foerste 1930 T64
 +
    `--*''H. haelluddenense'' Foerste 1930 T64
 +
  ''Rhyncolite'' Biguet 1819 (see below for synonymy) TMNZ64
 +
    |--*''R. hirundo'' Biguet 1819 [=*Rhombocheilus hirundo, *Rhyncholithes hirundo] TMNZ64
 +
    |--''‘Rhyncholitus’'' (''l. c.'') ''duplicatus'' Münster 1829 TMNZ64
 +
    |--''‘Rhyncolites’ gigantea'' d’Orbigny 1825 [=*''Longocapuchones gigantea'', ''Rhyncholithes giganteus''] TMNZ64
 +
    |--''R. larus'' Biguet 1819 TMNZ64
 +
    `--''R. mouette'' Biguet 1819 TMNZ64
 +
  ''Conchorhynchus'' de Blainville 1827 [=''Conchorchynchus'' (''l. c.''), ''Onchorhynchus'' (''l. c.'')] TMNZ64
 +
    `--''C. avirostris'' (von Schlotheim 1820) (see below for synonymy) TMNZ64
 +
  ''Tillicheilus'' Shimanskiy 1947 [incl. ''Unguibeccus'' Shimanskiy 1949 (''n. n.'')] TMNZ64
 +
    |--*''T. obtusus'' (Till 1906) [=''Rhyncholithes obtusus''] TMNZ64
 +
    `--''T. sella'' TMNZ64
 +
  ''Rhynchoteuthis'' d’Orbigny 1847 [=''Rhynchotenthis'' (''l. c.''), ''Rhynchotheutis'' Till 1906] TMNZ64
 +
    |--*''R. astierianus'' d’Orbigny 1847 TMNZ64
 +
    |--''R. kaibabensis'' TMNZ64
 +
    `--''R. sonii'' TMNZ64
 +
  ''[[Hadrocheilus]]'' TMNZ64
 +
  ''Palaeoteuthis'' d’Orbigny 1849 [=''Palaeotheutis'' Till 1906] TMNZ64
 +
    `--*''P. honoratianus'' d’Orbigny 1850 TMNZ64
 +
  ''Scaptorrhynchus'' Bellardi 1871 [=''Scaptorhynchus'' (''l. c.'')] TMNZ64
 +
    `--*''S. miocenicus'' Bellardi 1873 TMNZ64
 +
  ''Leptocheilus'' Till 1907 TMNZ64
 +
    |--''L.'' (''Leptocheilus'') TMNZ64
 +
    |    |--*''L.'' (''L.'') ''geyeri'' Till 1907 TMNZ64
 +
    |    `--''L.'' (''L.'') ''excavatus'' TMNZ64
 +
    `--''L.'' (''Mesocheilus'' Till 1909) TMNZ64
 +
        `--''L.'' (*''M.'') ''proceroides'' (Till 1909) [=*''Mesocheilus proceroides''] TMNZ64
 +
  ''Akidocheilus'' Till 1907 TMNZ64
 +
    |--''A.'' (''Akidocheilus'') TMNZ64
 +
    |    |--*''A.'' (''A.'') ''ambiguus'' Till 1907 TMNZ64
 +
    |    `--''A.'' (''A.'') ''tauricus'' TMNZ64
 +
    `--''A.'' (''Planecarpula'' Shimanskiy 1947) TMNZ64
 +
        `--''A.'' (*''P.'') ''infirus'' Shimanskiy 1947 TMNZ64
 +
  ''Gonatocheilus'' Till 1907 TMNZ64
 +
    `--*''G. brunneri'' (Ooster 1857) [=''Rhynchoteuthis brunneri''] TMNZ64
 +
  ''Erlangericheilus'' Shimanskiy 1947 TMNZ64
 +
    `--*''E. insignis'' Shimanskiy 1947 TMNZ64
 +
  Neptunoceratidae T64
 +
    |--''Neptunoceras'' Shimanskiy 1949 T64
 +
    |    `--*''N. sakmarense'' Shimanskiy 1949 T64
 +
    `--''Tetrapleuroceras'' Shimanskiy 1949 T64
 +
        `--*''T. karpinskyi'' Shimanskiy 1949 T64
 +
  ''Dartoceras'' Foerste 1936 T64
 +
    `--*''D. nodosum'' Foerste 1936 T64
 +
  ''Achelois'' de Montfort 1808 (''n. d.'') T64
 +
    `--*''A. pyramidatum'' de Montfort 1808 (''n. d.'') T64
 +
  ''Amblyceras'' Glockner 1842 (''n. d.'') T64
 +
    `--*''A. rittbergense'' Glockner 1842 (''n. d.'') T64
 +
  ''Bisiphites'' de Montfort 1808 (''n. d.'') T64
 +
  ''Curvites'' Petter 1959 (''n. d.'') T64
 +
  ''Deltoceras'' Hyatt 1894 (''n. d.'') T64
 +
    `--*''D. planum'' Hyatt 1894 (''n. d.'') T64
 +
  ''Diadiploceras'' Hyatt 1884 (''n. d.'') T64
 +
  ''Gyrocerus'' King 1844 (''n. d.'') T64
 +
  ''Koleoceras'' Portlock 1843 (''n. d.'') [=''Coleoceras'' (''l. c.'')] T64
 +
  ''Nautilites'' Pallas 1771 (''n. d.'') T64
 +
    `--*''N. complanatus'' Pallas 1771 (''n. d.'') T64
 +
  ''Oceanus'' de Montfort 1808 (''n. d.'') T64
 +
    `--*''O. flammeus'' de Montfort (''n. d.'') T64
 +
  ''Parksoceras'' Foerste & Savage 1927 (''n. d.'') T64
 +
    `--*''P. lepidodendroides'' (Parks 1915) [=''Orthoceras'' (''Thoracoceras'') ''lepidodendroides''] T64
 +
  ''Pteronautilus'' Meek ''in'' Meek & Hayden 1865 (''n. d.'') T64
 +
    `--*''P. seebachianus'' (Geinitz 1861) (''n. d.'') [=''Nautilus seebachianus''] T64
 +
  ''Schoulgoceras'' Shimanskiy 1951 (''n. d.'') T64
 +
  ''Ungeroceras'' Sturgeon & Miller 1948 (''n. d.'') T64
 +
    `--*''U. ungeri'' Sturgeon & Miller 1948 (''n. d.'') T64
 +
  ''Gasconoceras'' P68
 +
    |--''G. obesum'' Foerste 1936 P68
 +
    `--''G. planiventrum'' Foerste 1936 P68
 +
 
 +
''Conchorhynchus avirostris'' (von Schlotheim 1820) [=''Lepadites avirostris''; incl. *''C. ornatus'' de Blainville 1827, ''Rhyncolites gaillardoti'' d’Orbigny 1825, ''Rhyncholites gaillardoti'', ''Sepia gaillardoti''] TMNZ64
 +
 
 +
''Rhyncolite'' Biguet 1819 [=''Nautilorhynchus'' Frič 1910, ''Rhombocheilus'' Shimanskiy 1947, ''Rhyncholites'' Zieten 1830, ''Rhyncholithes'' de Blainville 1827, ''Rhyncholithus'' Bronn 1853, ''Rhyncholitus'' (''l. c.''), ''Rhyncolites'' d’Orbigny 1825, ''Rhyncholythes'' (''l. c.''); incl. ''Longocapuchones'' Shimanskiy 1947] TMNZ64
 +
 
 +
<nowiki>*</nowiki> Type species of generic name indicated
==''References'' ==
==''References'' ==
-
* Dzik, J. 2002. Emergence and collapse of the Frasnian conodont and ammonoid communities in the Holy Cross Mountains, Poland. ''Acta Palaeontologica Polonica'' 47: 565-650.
+
[BR05] Bouchet, P., J.-P. Rocroi, J. Frýda, B. Hausdorf, W. Ponder, Á. Valdés & A. Warén. 2005. Classification and nomenclator of gastropod families. ''Malacologia'' 47 (1-2): 1-397.
-
* Klug, C., & D. Korn. 2002. Occluded umbilicus in the Pinacitinae (Devonian) and its palaeoecological implications. ''Palaeontology'' 45 (5): 917-931.
+
 
-
* Poulton, T. P. 1987. Zonation and correlation of Middle Boreal Bathonian to Lower Callovian (Jurassic) ammonites, Salmon Cache Canyon, Porcupine River, northern Yukon. ''Geological Survey of Canada – Bulletin'' 358: 1-155.
+
[CP02] Christopher, R. A., & D. C. Prowell. 2002. A palynological biozonation for the Maastrichtian stage (Upper Cretaceous) of South Carolina, USA. ''Cretaceous Research'' 23: 639-669.
-
* Spaeth, C. 1998. Cretaceous cephalopods. ''Lethaia'' 31: 28.
+
 
-
* Teichert,Curt 1988. "Main Features of Cephalopod Evolution", pp.19-20, in ''The Mollusca'' vol.12, ''Paleontology and Neontology of Cephalopods'', ed. by M.R. Clarke & E.R. Trueman, Academic Press, Harcourt Brace Jovanovich
+
[CF03] Cruickshank, A. R. I., & R. E. Fordyce. 2003. A new marine reptile (Sauropterygia) from New Zealand: Further evidence for a Late Cretaceous austral radiation of cryptoclidid plesiosaurs. ''Palaeontology'' 45 (3): 557-575.
-
* Zhou, Z., & M. Liengjarern. 2004. Lower Permian perrinitid ammonoid faunas from Thailand. ''Journal of Paleontology'' 78: 317-339.
+
 
 +
[DC01] Delsate, D., & L. Candoni. 2001. Description de nouveaux morphotypes dentaires de Batomorphii toarciens (Jurassique inférieur) du Bassin de Paris: Archaeobatidae nov. fam. ''Bull. Soc. Nat. Luxemb.'' 102: 131-143.
 +
 
 +
[DM92] Doguzhaeva, L. A., & H. Mutvei. 1992. Radula of the early Cretaceous ammonite ''Aconeceras'' (Mollusca: Cephalopoda). ''Palaeontographica Abteilung A: Paläozoologie – Stratigraphie'' 223: 167-177.
 +
 
 +
[D02] Dzik, J. 2002. Emergence and collapse of the Frasnian conodont and ammonoid communities in the Holy Cross Mountains, Poland. ''Acta Palaeontologica Polonica'' 47: 565-650.
 +
 
 +
[E01] Eagle, M. K. 2001. A new species of ''Cottreauaster'' (Asteroidea: Echinodermata) from the Middle Jurassic of New Zealand. ''Records of the Auckland Museum'' 37: 93-100.
 +
 
 +
[FG64] Furnish, W. M., & B. F. Glenister. 1964. Nautiloidea - Ellesmerocerida. In ''Treatise on Invertebrate Paleontology'' pt. K. ''Mollusca 3. Cephalopoda – General Features – Endoceratoidea – Actinoceratoidea – Nautiloidea – Bactritoidea'' (R. C. Moore, ed.) pp. K129-K159. The Geological Society of America and the University of Kansas Press.
 +
 
 +
[GR97] Girard, C., E. Robin, R. Rocchia, L. Froget & R. Feist. 1997. Search for impact remains at the Frasnian-Famennian boundary in the stratotype area, southern France. ''Palaeogeography, Palaeoclimatology, Palaeoecology'' 132: 391-397.
 +
 
 +
[H87] Holland, C. H. 1987. The nautiloid cephalopods: a strange success story. ''Journal of the Geological Society'' 144 (1): 1-15.
 +
 
 +
[JD05] Junge, F. W., M. Dolezych, H. Walther, T. Böttger, A. Kühl, L. Kunzmann, P. Morgenstern, T. Steinberg & R. Stange. 2005. Ein Fenster in Landschaft und Vegetation vor 37 Millionen Jahren: Lithologische, sedimentgeochemische und paläobotanische Befunde aus einem Paläoflusssystem des Weißelsterbeckens. ''Mauritiana'' 19 (2): 185-273.
 +
 
 +
[KK02] Klug, C., & D. Korn. 2002. Occluded umbilicus in the Pinacitinae (Devonian) and its palaeoecological implications. ''Palaeontology'' 45 (5): 917-931.
 +
 
 +
[PE02] Pan, H.-Z., & D. H. Erwin. 2002. Gastropods from the Permian of Guangxi and Yunnan Provinces, south China. ''Journal of Paleontology'' 76 (Memoir 56): 1-49.
 +
 
 +
[P87] Poulton, T. P. 1987. Zonation and correlation of Middle Boreal Bathonian to Lower Callovian (Jurassic) ammonites, Salmon Cache Canyon, Porcupine River, northern Yukon. ''Geological Survey of Canada – Bulletin'' 358: 1-155.
 +
 
 +
[P98] Prothero, D. R. 1998. ''Bringing Fossils to Life: An introduction to paleobiology''. WCB McGraw-Hill: Boston.
 +
 
 +
[P68] Purnell, L. R. 1968. Catalog of the Type Specimens of Invertebrate Fossils. Part I: Paleozoic Cephalopoda. ''United States National Museum Bulletin'' 262: 1-198.
 +
 
 +
[RC02] Riding, J. B., & J. A. Crame. 2002. Aptian to Coniacian (Early – Late Cretaceous) palynostratigraphy of the Gustav Group, James Ross Basin, Antarctica. ''Cretaceous Research'' 23: 739-760.
 +
 
 +
[S98] Spaeth, C. 1998. Cretaceous cephalopods. ''Lethaia'' 31: 28.
 +
 
 +
[SC04] Stiller, F., & Chen J. 2004. ''Eophilobryoidella sinoanisica'' new genus and species, an early philobryid bivalve from the Upper Anisian (Middle Triassic) of Qingyan, southwestern China. ''Journal of Paleontology'' 78 (2): 418-419.
 +
 
 +
[STK64] Sweet, W. C., C. Teichert & B. Kummel. 1964. Phylogeny and evolution. In ''Treatise on Invertebrate Paleontology'' pt. K. ''Mollusca 3. Cephalopoda – General Features – Endoceratoidea – Actinoceratoidea – Nautiloidea – Bactritoidea'' (R. C. Moore, ed.) pp. K106-K114. The Geological Society of America and the University of Kansas Press.
 +
 
 +
[T64] Teichert, C. 1964. Doubtful taxa. In ''Treatise on Invertebrate Paleontology'' pt. K. ''Mollusca 3. Cephalopoda – General Features – Endoceratoidea – Actinoceratoidea – Nautiloidea – Bactritoidea'' (R. C. Moore, ed.) pp. K484-K490. The Geological Society of America and the University of Kansas Press.
 +
 
 +
Teichert,Curt 1988. "Main Features of Cephalopod Evolution", pp.19-20, in ''The Mollusca'' vol.12, ''Paleontology and Neontology of Cephalopods'', ed. by M.R. Clarke & E.R. Trueman, Academic Press, Harcourt Brace Jovanovich
 +
 
 +
[TMNZ64] Teichert, C., R. C. Moore & D. E. Nodine Zeller. 1964. Rhyncholites. In ''Treatise on Invertebrate Paleontology'' pt. K. ''Mollusca 3. Cephalopoda – General Features – Endoceratoidea – Actinoceratoidea – Nautiloidea – Bactritoidea'' (R. C. Moore, ed.) pp. K467-K484. The Geological Society of America and the University of Kansas Press.
 +
[TC71] Thomson, K. S., & K. S. W. Campbell. 1971. The structure and relationships of the primitive Devonian lungfish – ''Dipnorhynchus sussmilchi'' (Etheridge). ''Yale University Peabody Museum of Natural History Bulletin'' 38: 1-109.
 +
[W26] Withers, T. H. 1926. The crinoid ''Marsupites'', and a new cirripede from the Upper Cretaceous of Western Australia. ''Journal of the Royal Society of Western Australia'' 12 (11): 97-104, pl. XI.
 +
[ZL04] Zhou, Z., & M. Liengjarern. 2004. Lower Permian perrinitid ammonoid faunas from Thailand. ''Journal of Paleontology'' 78: 317-339.
'''Credits'''   
'''Credits'''   
-
text © M. Alan Kazlev 1998-2002; taxonomy and references CKT071126 with revisions by John M 2010
+
text © M. Alan Kazlev 1998-2002; dendrogram and references [[User:Christopher|Christopher]] 07:21, 30 January 2011 (UTC) with revisions by John M 2010

Revision as of 07:21, 30 January 2011

Personal tools